Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38293071

RESUMO

The study of animal locomotion and neuromechanical control offers valuable insights for advancing research in neuroscience, biomechanics, and robotics. We have developed FARMS (Framework for Animal and Robot Modeling and Simulation), an open-source, interdisciplinary framework, designed to facilitate access to neuromechanical simulations for modeling, simulation, and analysis of animal locomotion and bio-inspired robotic systems. By providing an accessible and user-friendly platform, FARMS aims to lower the barriers for researchers to explore the complex interactions between the nervous system, musculoskeletal structures, and their environment. Integrating the MuJoCo physics engine in a modular manner, FARMS enables realistic simulations and fosters collaboration among neuroscientists, biologists, and roboticists. FARMS has already been extensively used to study locomotion in animals such as mice, drosophila, fish, salamanders, and centipedes, serving as a platform to investigate the role of central pattern generators and sensory feedback. This article provides an overview of the FARMS framework, discusses its interdisciplinary approach, showcases its versatility through specific case studies, and highlights its effectiveness in advancing our understanding of locomotion. In particular, we show how we used FARMS to study amphibious locomotion by presenting experimental demonstrations across morphologies and environments based on neural controllers with central pattern generators and sensory feedback circuits models. Overall, the goal of FARMS is to contribute to a deeper understanding of animal locomotion, the development of innovative bio-inspired robotic systems, and promote accessibility in neuromechanical research.

2.
Nat Methods ; 19(5): 620-627, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545713

RESUMO

Animal behavior emerges from an interaction between neural network dynamics, musculoskeletal properties and the physical environment. Accessing and understanding the interplay between these elements requires the development of integrative and morphologically realistic neuromechanical simulations. Here we present NeuroMechFly, a data-driven model of the widely studied organism, Drosophila melanogaster. NeuroMechFly combines four independent computational modules: a physics-based simulation environment, a biomechanical exoskeleton, muscle models and neural network controllers. To enable use cases, we first define the minimum degrees of freedom of the leg from real three-dimensional kinematic measurements during walking and grooming. Then, we show how, by replaying these behaviors in the simulator, one can predict otherwise unmeasured torques and contact forces. Finally, we leverage NeuroMechFly's full neuromechanical capacity to discover neural networks and muscle parameters that drive locomotor gaits optimized for speed and stability. Thus, NeuroMechFly can increase our understanding of how behaviors emerge from interactions between complex neuromechanical systems and their physical surroundings.


Assuntos
Drosophila melanogaster , Marcha , Animais , Fenômenos Biomecânicos , Simulação por Computador , Marcha/fisiologia , Modelos Biológicos , Caminhada/fisiologia
3.
IEEE Access ; 9: 163861-163881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211364

RESUMO

Neural control of movement cannot be fully understood without careful consideration of interactions between the neural and biomechanical components. Recent advancements in mouse molecular genetics allow for the identification and manipulation of constituent elements underlying the neural control of movement. To complement experimental studies and investigate the mechanisms by which the neural circuitry interacts with the body and the environment, computational studies modeling motor behaviors in mice need to incorporate a model of the mouse musculoskeletal system. Here, we present the first fully articulated musculoskeletal model of the mouse. The mouse skeletal system has been developed from anatomical references and includes the sets of bones in all body compartments, including four limbs, spine, head and tail. Joints between all bones allow for simulation of full 3D mouse kinematics and kinetics. Hindlimb and forelimb musculature has been implemented using Hill-type muscle models. We analyzed the mouse whole-body model and described the moment-arms for different hindlimb and forelimb muscles, the moments applied by these muscles on the joints, and their involvement in limb movements at different limb/body configurations. The model represents a necessary step for the subsequent development of a comprehensive neuro-biomechanical model of freely behaving mice; this will close the loop between the neural control and the physical interactions between the body and the environment.

4.
Front Syst Neurosci ; 14: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733210

RESUMO

Being able to replicate real experiments with computational simulations is a unique opportunity to refine and validate models with experimental data and redesign the experiments based on simulations. However, since it is technically demanding to model all components of an experiment, traditional approaches to modeling reduce the experimental setups as much as possible. In this study, our goal is to replicate all the relevant features of an experiment on motor control and motor rehabilitation after stroke. To this aim, we propose an approach that allows continuous integration of new experimental data into a computational modeling framework. First, results show that we could reproduce experimental object displacement with high accuracy via the simulated embodiment in the virtual world by feeding a spinal cord model with experimental registration of the cortical activity. Second, by using computational models of multiple granularities, our preliminary results show the possibility of simulating several features of the brain after stroke, from the local alteration in neuronal activity to long-range connectivity remodeling. Finally, strategies are proposed to merge the two pipelines. We further suggest that additional models could be integrated into the framework thanks to the versatility of the proposed approach, thus allowing many researchers to achieve continuously improved experimental design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...